Dairy Science and Food Technology

Scientific, information & consultancy services for the food industry

Copyright Protected

Content copyright protected

Science Services

DSFT has been providing science based consultancy services globally since 2002.
  
Click to learn more.

The Dairy Science and Food Technology (DSFT) website provides scientific and technological information, Cloud-based tools and consultancy services for food scientists and technologists working in industry and in colleges and universities. A discussion forum and interactive content through "On Line" calculators are also provided. Writing/citation resources including a Harvard-type reference wizard and a range of citation-wizards can also be accessed.

There are sections on starter cultures, probiotics, cheese science and technology, bioactive peptides, ice cream, wine making, modelling in food technology, thermal processing and modified atmosphere packaging and labelling. Some general health information including reference to allergy and food intolerance is also presented.

Range of flavoured ice creams

Ice cream and gelato manufacturers produce products with a range of favours. There are often significant variations in sweetness and hardness between flavours. This article provides an explanation of sweetness, how it is measured and how it can be controlled.

Relative sweetness and the Potere Dolcificante method are discussed and calculations are used to explain the differences. The limitations and disadvantages of using numerical values of sweetness are explained. Since sweetness and hardness are closely related the reader is also referred to the article on controlling hardness or resistance to scooping.

Starter bacteria in yoghurt

This article discusses the origins and role of starters in dairy fermentations, the ecology of starter bacteria, the classification of starter bacteria,  the types of starter culture used and concludes with some observations on artisanal cultures. The author has  provided a broader perspective on the use of starter cultures in food fermentations in the Encyclopedia of Food Microbiology. The chapter can be downloaded from Elsevier Ltd.

Ecology of starter bacteria

So where did modern starter cultures come from? Most starters in use to today have originated from lactic acid bacteria originally present as part of the contaminating microflora of milk. These bacteria have probably originated from vegetation in the case of lactococci (Sandine et al., 1972) or the intestinal tract in the case of Bifidobacterium spp., enterococci and Lactobacillus acidophilus.

Chemical differences between cheeses

What makes one cheese e.g. Cheddar different from Gouda or Emmental?

There are many ways in which traditional cheeses can be described or classified. Criteria such as country of origin, type of milk used, species of animal used to produce the milk, fat content, moisture content, texture, whether mould ripened or not, cheese making process used, moisture in the non-fat solids have been and continue to be used. These criteria have been used either singly or in combination.

These descriptive approaches are limited in that they provide no theoretical insight into why one cheese is different from another and do not help in the development of new varieties.  In other words, we need a way to explain why Gouda cheese is different than Cheshire or what makes Emmental different than Cheddar cheese? And, we need an answer that is more sophisticated that saying the level of starter addition is different!

For many years researchers in New Zealand, the UK, Ireland, the Netherlands and elsewhere were aware that there were significant differences in the pH and mineral concentrations of the major cheese varieties. 

Subcategories

We use cookies to improve our website and your experience when using it. To find out more about the cookies we use, see our Privacy and Cookie Policy.

'Learn more about managing cookies'