Dairy Science and Food Technology

Scientific, information & consultancy services for the food industry














Copyright Protected

Content copyright protected

Science Services

DSFT has been providing science based consultancy services globally since 2002.
Click to learn more.


Prior to the early 1930's most cheese was made from undefined starter cultures; species and strain composition were generally unknown and if known initially would change with each subculture.

Dr Hugh Whitehead and his colleagues at the New Zealand Dairy Research Institute realised that if the dairy industry in that country was to produce close-textured cheese, free from taste and body defects and manufactured within a consistent time period that it would be necessary to use standardised starter cultures. They also realised that they needed to prevent problems arising from the growth of 'wild' lactic acid bacteria and spoilage organisms in the raw milk and introduced pasteurisation of milk for cheese manufacture.

Any agent which inhibits starter activity or kills a strain with an essential function e.g. aroma production can have serious detrimental effects on the quality of the product being produced. Infection with bacteriophage is the major single cause of fermentation failure or of problems in fermentation processes utilising lactic acid bacteria.

The major functions of starters in dairy fermentations are shown in table 1. See the section on starters also.

The infection of a growing bacterial culture with phage is initiated by the adsorption of the phage to the host cell. The specificity of adsorption of lactococcal phages and the location of phage receptor substances have been studied and has been reviewed (Lawrence et. al., 1976).

Lactococcal bacteriophages

Bradley (1967), in a classic review paper, summarised the principles of phage morphology and outlined six basic morphological types (fig. 1). The tailed phages, Bradley's groups A-C account for some 96% of all phages isolated to date and as discussed below belong to the order Caudovirales. Only phages in Group A have contractile tails. All tailed bacteriophages have a nucleic acid core surrounded by a protein coat. Phages active against lactic acid bacteria are approximately tadpole or sperm shaped and have a distinct head terminating in a tail with a hollow core.

Phages attacking lactic acid bacteria belong to Groups A, B and C and contain double stranded DNA. Phages in Groups D and F contain single stranded DNA, however, Group E phages contain single-stranded RNA.

The basic principles of phage control in commercial plants have been known since the early 1940s and the pioneering work of Dr Hugh Whitehead and his colleagues in New Zealand. The review by Whitehead and Hunter (1945)* on the measures that were being used in New Zealand to control slow acid production due to phage infection is still of relevance to factory managers today.

Phage release, the final stage in the phage-life cycle, has been extensively studied and is caused, at least in part, by the action of phage-induced hydrolytic or lytic enzymes.

Because phage lysin has a much broader lytic range than phage, infection of paired and multi-strain cultures with a lysin-producing phage has the potential to cause fermentation failure, dead-vats, and consequent economic loss.

While phage lysin has long been suspected of having an important part in phage lysis it has taken techniques using molecular biology to clarify its in vivo role.

The activity of phage lysins can be determined using several methods; turbidimetry or the determination of the change in concentration of some solubilised cell wall component are frequently used.

 Turbimetry, where a standardised suspension of cells in buffer is mixed with a sample of lysin-containing material is widely used. The lysin causes lysis of the cell suspension and a reduction in optical density (OD). Enzyme activity can be calculated from the decrease in OD with time.

The following method has been found to give satisfactory results (Mullan and Crawford, 1985a).

Cells were suspended in 0.1 M-K phosphate buffer, pH 6.8, to give an OD at 450nm of 0.62-0.75. Depending on the lytic activity, 0.1-1.0 ml of lysin containing solution was added to 5ml of standardized cell suspension at 37°C. After mixing, OD readings were taken at 30 s intervals over a 2-6 min period. Absorption readings were plotted against time and only values on the linear portion of the graphs were used for calculation.

The first stage in the isolation of phage lysin is the production of lysates containing high concentrations of phage. Because lysin concentration is correlated with phage concentration, this objective can be achieved by obtaining lysates containing >1 x 10 10 pfu/ml (Mullan and Crawford, 1985a). Information on the production of high tire phage lysates has been discussed previously. The effects of phage lysin on cells of Lc. lactis c10 is shown below. The lysin rapidly removes the cell walls resulting in cell death.

There are many reasons why information on the concentration of bacteriophage in a sample may be required. These include the determination of:

The double agar method as described by Adams (1959) is widely used to enumerate phages.  In this method a small volume of a dilution of phage suspension and a small quantity of host cells grown to high cell density, sufficient to give 107-108 CFU/ml, are mixed in about 2.5 ml of molten, 'soft' or 'top' agar at 46°-50°C. It is important to avoid over mixing the soft agar since that could result in air bubbles forming in the soft agar and potential misidentification of the bubbles as plaques. The resulting suspension is then poured on to an appropriate 'nutrient' basal agar medium e.g. M17 (Terazaghi and Sandine, 1975) for lactococci to form a thin 'top layer' which hardens and immobilises the bacteria. Refer to figure 1 below.


Over 99% of phages detected using microscopy have not been cultured. This article explores factors that influence plaque formation and if addressed may help in phage isolation.

Current data indicate that some 1031 bacteriophages exist globally, including about 108 genotypes. Some phages form very tiny or micro plaques. These can sometimes be so small that it is almost impossible to see them. Frequently 'new' phages can be observed using e.g. electron microscopy under conditions where there is strong evidence of a potential host yet it can be very time consuming or in some instances not possible to get the phage to form plaques. Less than 1% of the phages observed using microscopy have ever been grown in culture, this is sometimes called "the great plaque count anomaly".

Phage activity can also be assessed indirectly by measuring culture activity, the premise being that the presence of disturbing phage will inhibit starter growth.

Several methods are available, and include-

How do you isolate a bacteriophage (phage) and obtain a pure phage preparation? This is achieved by plating a phage suspension using the double agar method, and a susceptible host strain, to obtain plaques and further purifying the phage contained within the plaque.

It is frequently necessary to produce and use high titre phage preparations.

This section provides summary information on the production and storage of high-tire lactococcal phage preparations.

This section contains summary information on modified atmosphere packaging. More comprehensive treatment is available in a chapter on modified atmosphere packaging, written by the author and Derek McDowell, in the book Food Packaging Technology. Derek McDowell is Head of Supply and Packaging at Loughry Campus and is a packaging specialist.

The effect of modified atmosphere packaging (MAP) on dairy products, raw meat, raw poultry , cooked meat and fruit and vegetables is discussed.

Dairy products

 MAP has the potential to increase the shelf life of a number of dairy products.  These include fat-filled milk powders, cheeses and fat spreads.  In general these products spoil due to the development of oxidative rancidity in the case of powders and or the growth of micro-organisms, particularly yeasts and moulds, in the case of cheese.

Whole milk powder is particularly susceptible to the development of off-flavours due to fat oxidation.  Commercially the air is removed under vacuum and replaced with N2 or N2/CO2 mixes and the powder is hermetically sealed in metal cans. 


EU regulation 1924/2006 on Nutrition and Health claims made on food was published on 18 January 2007. This is the first piece of scientific legislation to deal with nutrition and health claims and aims to provide a higher level of consumer protection as well as harmonise legislation across the EU to facilitate intra-Community trade.

The regulation will control nutrition and health claims by means of positive lists of authorised claims that can be made on food together with the criteria a product must meet to use them. The annex of the regulation contains the list of permitted nutrition claims and the regulation puts in place processes for the compilation of the list of authorised claims. EU regulations are directly applicable in Member States and this regulation will apply from 1 July 2007.

The purpose of this section is to provide some advice on how the nutrient density or energy content of foods is calculated and displayed on food labels. A calculator is also included to enable students producing new products to calculate the energy density using the chemical constituents of the food. The calculator can also be used as a food calorie calculator.

Food manufacturers in most countries are legally obliged to make several declarations on food labels. The UK Food Standards Agency has a very good overview of labelling from a consumer perspective including an interesting review of public perception of labels .

Summary in Italian

Nel Mondo vi è un elevato numero di bevande ottenute dalla fermentazione alcolica di liquidi zuccherini quali succhi vegetali, miele, latte ecc., ma le più importanti per diffusione e quantità prodotte sono senza dubbio il vino, la birra ed il sidro. Lo scopo di questo breve articolo è quello di riassumere la storia e la tecnologia produttiva di una di queste bevande, ottenuta dalla fermentazione dell'uva, il vino. Conosciuto già dagli Egizi, il vino ha accompagnato con alterne vicende l'uomo in tutta la sua storia, divenendo nella cultura cristiana simbolo, con il pane, dell'unione stessa con Dio. Prodotto in quasi tutto il modo anche in virtù dell'ampio areale di coltivazione dell'uva, il vino si presenta al consumatore in varie tipologie (rosso, bianco, rosato, dolce, secco, spumante ecc.) volte ad interpretare al meglio le caratteristiche della materia prima ed a soddisfare le esigenze del consumatore stesso. Alla base di queste diverse tipologie di prodotti vi sono altrettante tecnologie venutesi a definire nei secoli ed i cui aspetti fondamentali vengono descritti in queste pagine con la speranza di stimolare il lettore ad approfondirne lo studio sui numerosi testi specialistici attualmente disponibili.


There is a wide range of alcoholic beverages obtained by the fermentation of sweet liquids (vegetable juices, honey, milk) but the most important are wine, beer and cider. Wine is an alcoholic beverage produced by the fermentation of the juice of fruits, usually grapes, although other fruits such as plum, banana, elderberry or blackcurrant may also be fermented and used to obtain products named "wine". In this short article the word "wine" refers to the product obtained from grapes. This product is probably the most ancient fermented beverage and was mentioned in the Bible and in other documents from Asiatic peoples. Exactly where wine was first made is still unclear. It could have been anywhere in the vast region, stretching from Portugal to Central Asia, where wild grapes grow. However, the first large-scale production of Commercial grape production
wine must have been where grapes were first domesticated, Southern Caucasus and the Near East. In Egypt, wine played an important role in ancient ceremonies and winemaking scenes are represented on tomb walls. Outside Egypt much of the ancient Middle Eastern peoples preferred beer as a daily drink rather than wine. However, wine was well-know especially near the Mediterranean coast and was used in the rituals of the Jewish people. The Greeks introduced wine to Europe and spread the art of grape-growing and winemaking across the Mediterranean hence modern wine culture probably  derives from the ancient Greeks. Wine

was known to both the Minoan and Mycenaean cultures and referred to as "Juice of the Gods". Dionysus was the Greek god of wine and wine was frequently mentioned in Homer's and Aesop's operas. Many of the grapes grown in Greece are grown nowhere else and are similar or identical to varieties grown in ancient times. Greek wine was widely known and exported throughout the Mediterranean basin, and amphorae for Greek wines have been found extensively in this area.

I get lots of queries from companies and individuals either requesting recommendations for people who might be suitable for dairy science, dairy technologist, food technologist jobs or for advice from food job seekers on vacancies in particular job areas. I regret that I can no longer respond directly to these queries, I simply do not have the time to do so.

I will use  this page to  publicise posts connected with the subject areas covered by this site and will consider publicising the details of people searching for work here also. If you wish to advertise a vacancy on this site please use the contact form to discuss your vacancy. Companies placing adverts normally make a small donation towards the running costs of the Dairy Science and Food Technology website or link to this site.  

You can also obtain information about careers and current vacancies in food science and food technology in the links section of this site. I will try to keep these updated and have added a number of  recruitment company links. Note that there is a world wide shortage of food scientists and technologists and that pay and working conditions in many countries now reflect this new reality. Food scientists and technologists with postgraduate qualifications are particularly well paid in the US and the remuneration situation is now improving significantly in the UK, Ireland and in other parts of Europe.

This article provides students with an overview of why employers are increasingly attempting to recruit graduates with entrepreneurial skills. It also explores why economies within the European Union need more people with imagination and drive to think and act in an entrepreneurial manner to create exciting opportunities for themselves and others. Entrepreneurship is not something special that a few people are born with. Entrepreneurship is a way of thinking that can be nurtured in any environment, not just business start-ups but also in existing private and public organisations. Therefore, it is not surprising that schools and colleges are interested in producing more enterprise-savvy graduates; and governments are committed to equipping people with enterprise skills in all walks of life. This article outlines how important it is for everyone to cultivate his or her entrepreneurial spirit.

Typical pots of UHT milk


This article investigates how to calculate the lethal effects of UHT treatment and the usefulness of TTIs for differentiating sterilised, direct and indirectly processed UHT-treated milk. The importance of accessing accurate temperature time-data and knowing holding tube dimensions, flow rate, average and minimum holding time and the flow characteristics (Reynolds number) are discussed. The reliability of a model developed by Claeys et al. (2003) to predict the effects of UHT-processing on hydroxymethylfurfural, lactulose and furosine concentrations in milk is discussed. Free On Line calculators for calculating holding time, average flow rate, holding tube length in UHT and HTST plants are provided. A free On Line calculator programmed using the thermal constants calculated by Claeys et al. (2003) is provided to calculate hydroxymethylfurfural, lactulose and furosine concentrations following heat treatment in skim, semi fat and full fat milks. This calculator also calculates F0, B*, C* and % destruction of thiamine. Two methods of numerical integration are used to measure the cumulative lethal and chemical effects of UHT treatment, namely the Trapezoid and Simpson's rules.


Typical UHT treatments involve heating milk to 137 to 150 in a continuous-flow process and holding at that temperature for one or more seconds before cooling rapidly to room temperature. The milk is then aseptically packaged to give a product that is stable for several months at ambient temperature.

In Europe, UHT treatment is defined as heating milk in a continuous flow of heat at a high temperature for a short time (not less than 135 °C in combination with a suitable holding time, not less than a second) such that there are no viable microorganisms or spores capable of growing in the treated product when kept in an aseptic closed container at ambient temperature (Reg EC 2074/2005).

DSFT provides a range of thermal processing consultancy services to food and pharmaceutical manufacturers. These include:

  • Independent validation of the antimicrobial effectiveness of the heat treatments used in processing.
  • Calculation of the average holding time used in processing HTST and HHST products.
  • Determination of the flow type and calculation of the minimum holding or residence time of the fastest flowing particles in HTST and HHST products.
  • Determination of the F values and the number of logarithmic (log10) reductions of designated microorganisms following heat treatment.
  • Advice on equivalent heat processes to meet legislative and other requirements.
  • Benchmarking of company processes against statutory and international best practice.
  • Advice on alternative methods to microbiological examination for providing additional assurance of adequate heat treatment e.g. the phosphatase test is of no value in providing assurance that a temperature >80°C was used in milk processing. Additional tests that confirm higher temperatures than e.g. normal milk-pasteurization temperatures can be provided. The merits of incorporating these into routine quality assurance testing will be explained.

Many students have problems in understanding the mathematics describing the destruction of microorganisms by heat. Log reductions of pathogens and equivalent time-temperature treatments along with the associated lethalities account for a large part of the harder to understand topics. The quiz below is a simple test of of some of the basic concepts. Note Z value is not dealt with in this quiz. If there is sufficient interest I will provide the answers.

Heat Processing Quiz

An article on thermal process modelling has been added. This article calculates the effect of HTST treatment on the number of log reductions of major milk pathogens and discusses the temperature milk should be pasteurized if Mycobacterium avium subsp. paratuberculosis (MAP) was designated as a human pathogen. The log reductions refer to log10 or decimal (10 fold) reductions in the concentration of viable bacteria.

 Effect of HTST treatment on the number of log reductions of major milk pathogens.

Can you destroy Mycobacterium avium subsp. paratuberculosis (MAP) by pasteurization? How important is holding time compared with holding temperature?  Use the powerful free tools in this section to answer these questions.

Technologists must be able to calculate the cumulative lethality of a heat process normally referred to as F. This is done by defining a reference temperature, e.g. 121.1 °C for a F0 calculation using a low acid food or e.g. 93.3 °C for an acid product, at which the equivalent lethal effects experienced during heating and cooling at lower temperatures are calculated.

The area under the lethality curve is normally calculated using numerical integration. The most commonly used method is the trapezium or trapezoid method. An alternative, more accurate, but slightly more complicated method, is to use Simpson's rule or to be more correct Simpson's rules.

Technologists producing acidic foods such as pickles and sauces often find it difficult to get information on the processing conditions required to obtain commercial sterility or how to calculate the processing time at a higher temperature. Following the experience of working with processors experiencing technical issues, including spoilage problems and difficulties in exporting products, I have produced a concise Ebook (Thermal processing of acid fruit and vegetable products. Significant microorganisms, recommended processing time / temperatures, and public health significance of spoilage) that may be helpful. Currently the Ebook (figure 1):

The calculator converts temperature readings to lethal rates, plots the lethal rates against time, and determines F or P values for a heat process whether using hot water, saturated steam or dry heat. The area under the curve is determined using the trapezoid rule. Accurate F or P determinations for most thermal processes can be obtained. In general the more values, the more accurate the value for F or P will be. 

 Dry heat sterilisation is widely used for glassware and materials that are not suitable for sterilisation using saturated steam. A range of temperatures and times are used.  Currently a temperature of at least 170°C for 30-60 minutes is widely used. The term is not particularly precise since variable concentrations of water may be present.

There will be occasions when a food manufacturer wishes to use a different, but equivalent lethal thermal process. How does the processor calculate the equivalent process?

This article explains how to calculate an equivalent thermal or heat process at a higher or lower temperature and provides access to a free On Line calculator for checking your calculations.

Small, and even large companies, frequently find it difficult to contact potential new supplier or service partners. This is a particular problem for some small companies attempting to operate testing laboratories.

However, there are companies who provide exemplary customer service and work hard to meet customer needs. The following is a list of these companies that provide exemplary customer service in the laboratory service area.

The nature of polyphosphate

Inorganic polyphosphate (polyP) is a linear, unbranched polymer of orthophosphate residues linked by phosphoanhydride bonds (Figure 1.1).  PolyP ranges in size from three to over one thousand orthophosphate residues (Kornberg et al., 1999).  PolyP is widespread in bacteria and yeasts and has been found in plant and animal cells (polyP is also formed by dehydration and condensation of phosphate at the elevated temperatures of benthic and volcanic vents (Kornberg et al., 1999).

Linear structure of polyphosphate
PolyP was first found in yeast cells by Liebermann (1888). Further work by Wiame (1947), Kornberg (1956) and others through the 1940s and 1950s established the role of polyP, or 'volutin' as it was then known in the accumulation of phosphate and in energy storage by microorganisms. PolyP was observed in many microorganisms as metachromatic particles and was historically used as a diagnostic tool for certain pathogens such as Corynebacterium diphtheriae (Robinson & Wood, 1986). PolyP, like other anions, shifts the absorption of basic dyes such as toluidine blue, to a shorter wavelength (630 to 530nm) therefore giving rise to a metachromatic effect. When viewed by electron microscopy intracellular polyP appears as dark, electron dense granules. The presence of polyP in cells may also be detected by other techniques such as 31P-NMR analysis (Glonek et al., 1971) and by fluorescence of 4-6-diamidino-2-phenylindole (DAPI) (Allan & Miller, 1980).

The articles on the Lactoperoxidase system by Michael Mullan include material produced with former colleagues, in particular Professor Lennart Bjorck (SE), Dr Ir. J Stadhouders (NL) and Professor Dr W Heeschen (DE), on International Dairy Federation Group IDF F19, 'Indigenous antimicrobial proteins in milk'.

The work of the group was initially focused, after a request in 1982 from the Joint FAO/WHO Committee of Government Experts for technical advice from IDF on the use of the lactoperoxidase system for preservation of raw milk. This work resulted in a "Code of Practice", which was published in 1988 (Bulletin of IDF No. 234/1988).

 In the 1985, IDF through Group F 19 "Indigenous antimicrobial proteins in milk" working in collaboration with the Federation of European Microbial Societies (FEMS) organised a symposium titled "Antimicrobial systems in milk".

The author presented a paper on behalf of the Group entitled"Significance of the Antimicrobial Proteins of Milk to the Dairy Industry" at the IDF Cheese Week at Rennes, France 1988. This draft document formed the basis of a more extensive monograph entitled the 'Significance of the indigenous antimicrobial agents of milk to the dairy industry' published by IDF in 1991 (IDF bulletin . 264/1991). More recently a monograph,'Determination of indigenous antimicrobial proteins of milk' (IDF No. 284/1993), detailing methods for the analysis of these antimicrobial proteins in milk was published.

Conditions governing use of this website

It is a condition that those using this site only do so if they accept the following conditions and any specific conditions associated with the spreadsheets, Ebooks or subscription services.

I have included a range of calculators e.g. aids for determining yield, milk component retention in cheese manufacture, ice-cream mix composition and the F-value of thermal processes. Wizards to help students produce correctly cited references have also been included. These aids are included for the use of students and trainees and are not intended for commercial use or to replace support from lecturers and tutors.

It is a condition of using this website that you accept that you use all software and educational material at your own risk including any that you obtained after donation and download.

I accept no liability and cannot be held accountable for any losses/damages/problems/consequences arising from the use or interpretation of any material that I have provided for educational use including any errors made by me or others.

The general conditions concerning donation and use of spreadsheet and subscription services are given at https://www.dairyscience.info/index.php/technology/181-spreadsheets.html .

If you do not accept these, and the conditions below, please do not use this site.


Dairy Science and Food Technology (DSFT) does not collect personal information, with the exception of Email addresses, of people using subscription services. E-mail data will be kept securely in accordance with UK-data protection legislation until deleted.  This data will not be sold, given or shared with anyone unless required by law enforcement agencies.

Cookie policy
We use cookies on this site. These include cookies that are required to enable you to move around the site or to provide certain basic features in accordance with current EU and UK legislation. In addition we also use cookies provided by Google (Google Analytics and the Google DoubleClick cookie).

The Google Analytics cookie collects information about how people use DSFT so that we can provide a better service to users.

The DoubleClick cookie is used by Google to serve adverts on this site that they consider may be of interest to you. DSFT uses this Google service to help defray operating costs through Google-generated advertising. If the site moves to a subscription-only-service this facility will not be required and will be removed.

What is a cookie?
A cookie is a simple text file that is stored on your computer, smart phone or tablet by the computer (server) hosting this website. Each cookie is unique to your web browser. It will contain some anonymous information such as a unique identifier and the DSFT site name and some digits and numbers.

What if you don’t want cookies?
It is possible to block most or all cookies (by changing your browser preferences), and to delete cookies that have already been set. However, if you do this you will not be able to use some DSFT website functions.

You can delete or block most cookies by following the instructions given in your browser's operating instructions, usually accessed using the help button or link. The "About Cookies organisation" provides detailed instructions on how to manage cookies for many browsers working on PCs and Macs.


The views expressed are either mine or those of the other contributors. Note contributing authors, including those posting in the forum, are solely responsible for the content of their articles including all views and statements  made. 

 Where I have listed URLs of other sites no guarantees are made that any of the links on these pages still work, or are appropriate for your intended use. Site URLs change and others sometimes use these previously appropriate links for purposes that may be offensive or illegal. It is not my intention to direct anyone to sites other than those that contain academically relevant 'food' related content. If you find a broken link or that a link has been changed please let me know and I will modify the link or remove the reference to that link on this site.


I am not medically qualified and this site is not intended to be a source of medical or nutritional advice for anyone. If you read material that you consider to have health or nutritional significance to you, please discuss any action that you are considering with a qualified medical practitioner.

 I am not responsible for the views and statements in articles written by site contributors other than me.


While using this web site, you should not: post or transmit any unlawful, threatening, abusive, or objectionable information of any kind, including encouraging unlawful conduct ; post or exploit any information, software or other material obtained through this web site for commercial purposes (other than as expressly permitted by me and where I am the copyright holder); upload, post, publish, transmit, reproduce, or distribute, information, software or other material obtained through this site without my permission; or upload, post, publish, reproduce, transmit or distribute any element or part of the this web site since the web site is copyrighted to me.


 I have tried to make this site as accessible as I can for people who are blind or have difficulty with particular colours. Most pages have been viewed using a text-based browser called Lynx and should meet the requirements of several software packages that translate text to speech. Any problems please Email me and tell me what is wrong. I will try to change the site coding to help you.


Dr Michael Mullan, FIFST
Dairy Science and Food Technology website


If you are submitting assignments, essays or theses then you are required to correctly reference any ideas, images, data, reference lists you have used which are not your own. This also includes data and information you have obtained from electronic sources including the Internet.

Failure to give credit to the work of others can result in you being accused of plagiarism which if proven could result in no marks being given for your work or suspension from your course or even expulsion from your College or university.

  Harvard reference generator button   Harvard reference list-writer button  

So you want to know how to cite a reference?  Here you can use 50 Harvard reference wizards to generate a bibliography, "Works Cited", references or citations to books, speeches, images, legal rulings, websites and many other sources of information using the Harvard style, author-date citation method; the legal rulings are not referenced using the Harvard system but are included because many students need to cite at least one legal citation. 

Over the past 10-15 years, there has been an enormous increase in the sources of information available to students; if you are an academic just look at your own thesis and determine how many different citations you used.  If you graduated more than 10-years ago it is unlikely that you used more than 10-different reference types. The diversity of information sources that today's students encounter can create difficulties when it comes to correctly citing some sources, particular electronic sources, let alone judging the validity of the source. Perhaps it should not be a surprise that referencing causes so many problems across higher education wherever it is undertaken!

Following my experiences as a research supervisor, teacher, education manager and external examiner I decided that I would try to make referencing a little easier by creating a series of 'wizards'; these are forms in which information is entered, and if entered correctly, will  result in a correctly formatted reference. Hopefully through this facility, supervisors may avoid the tautology of citations with ISBN numbers, incorrect Mintel citations and web references!

There are two Harvard style reference generators that you can use on this site; the Harvard Reference Generator which will provide a correctly formatted reference for 48-types of citation.You can either copy and paste the citation into a reference list or export to "Word". Alternatively you may use the Reference List Writer which will provide a list of references arranged in date and alphabetical order. The latter requires registration; this can be as simple as using any two words, numbers or combinations thereof. However if you want to retrieve your list at a future time and forget your details you are advised to use an Email address!

There are a range of formulae that can be used to assess the readability of written text.  While these all have limitations, judicious use of several ‘readability' predictors can improve the clarity of writing of articles, theses, reports and assignments.

The software used here, an online readability calculator, will return a number of indicators including the average words per sentence, Fog index, Flesch reading ease score, and Flesch-Kincaid grade level. These readability indicators may be of help in editing and developing your written work.

It is unclear how useful computer programmes are for analysing scientific writing since the language used tends to be complex. However, some studies have shown that the indicators derived using the software here do have value.

How to convert numbers to scientific notation and back to standard format?

This article explains how to convert numbers to scientific notation and back again to standard format. It also contains two calculators that will enable calculations to be checked and that provide feedback on common data entry input errors.  

How do you convert numbers to scientific notation?

In mathematics, science and engineering students frequent have to work with very small, e.g. 0.000005, and very large, e.g. 3200000000 numbers. For example, students in microbiology are often required to write the number of colony forming units (CFU)/mL or gram in scientific notation. To avoid dealing with these large and small numbers mathematicians, scientists and engineers have developed a particular way of expressing numbers; this is called scientific notation.

Click on a name below to send an Email message.






Dr. Michael Mullan

Site coordinator and owner, Northern Ireland



Dr. Kalpana Dixit

PhD student, National Dairy Research Institute, India



Dr. D. N. Gandhi

Principal Scientist (Dairy Microbiology), National Dairy Research Institute, India



Dr. Alan Mullan

Research Scientist, Northern Ireland



Dr. Nupur Goyal

Lecturer Biotechnology Department, ICFAI Tech University, India



Dr. Emily Haque

PhD student, National Dairy Research Institute, India



Dr. Rattan Chand

Principal Scientist (Dairy Microbiology), National Dairy Research Institute, India



Dr. Cecilia Hegarty

Lecturer in Entrepreneurship, University of Ulster, Northern Ireland



Mr. Ian McCluggage

Head of Dairying & Pigs Development Branch,CAFRE, DARD, Northern Ireland



Prof. Giuseppe Zeppa

Researcher in Food Technology, Di.Va.P.R.A., Turin University, Italy



Ms Claire Towley

Marketing Executive, Chr. Hansen(UK) Ltd, England

+441488 689800


Mr Jaap de Jonge

Jongia (UK) Ltd., England

+44121 7444844




We use cookies to improve our website and your experience when using it. To find out more about the cookies we use, see our Privacy and Cookie Policy.

'Learn more about managing cookies'